Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Viruses ; 15(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36680240

RESUMO

Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens resistance of Aspergillus fumigatus common reference strain Af293 biofilms in intermicrobial competition with Pseudomonas aeruginosa. We compared the sensitivity of two infected and one virus-free Af293 strains to antifungal drugs. All three were comparably sensitive to drugs affecting fungal membranes (voriconazole, amphotericin) or cell wall glucan synthesis (micafungin, caspofungin). In contrast, forming biofilms of virus-free Af293 were much more resistant than AfuPmV-1-infected Af293 to nikkomycin Z (NikZ), a drug inhibiting chitin synthase. The IC50 for NikZ on biofilms was between 3.8 and 7.5 µg/mL for virus-free Af293 and 0.94-1.88 µg/mL for infected strains. The IC50 for the virus-free A. fumigatus strain 10AF was ~2 µg/mL in most experiments. NikZ also modestly affected the planktonic growth of infected Af293 more than the virus-free strain (MIC 50%, 2 and 4 µg/mL, respectively). Virus-free Af293 biofilm showed increased metabolism, and fungus growing as biofilm or planktonically showed increased growth compared to infected; these differences do not explain the resistance of the virus-free fungus to NikZ. In summary, AfuPmV-1 infection sensitized A. fumigatus to NikZ, but did not affect response to drugs commonly used against A. fumigatus infection. Virus infection had a greater effect on NikZ inhibition of biofilm than planktonic growth.


Assuntos
Antifúngicos , Vírus de RNA , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aspergillus fumigatus/fisiologia , Aminoglicosídeos/farmacologia , Aminoglicosídeos/metabolismo , Anfotericina B/metabolismo , Anfotericina B/farmacologia
2.
J Biomol Struct Dyn ; 41(12): 5685-5695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35787240

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to characterize the interactions of amphotericin B (AmB), miltefosine (MIL) and nerolidol (NER) with the plasma membrane of Paracoccidioides brasiliensis. Spin-labeled analogs of stearic acid and steroid androstane distributed into the plasma membrane of the fungus treated with AmB, showed strong interactions with putative AmB/sterol complexes. The observed increase in the EPR parameter 2A// caused by AmB can be interpreted as a remarkable reduction in the spin label mobility and/or an increase in the local polarity. The 2A// parameter reduced gradually as the concentration of MIL and NER increased. The membrane-water partition coefficient (KM/W) of the three compounds under study was estimated based on the minimum concentration of the compounds that causes a change in EPR spectrum. The KM/W values indicated that the affinity of the compounds for the P. brasiliensis membrane follows the order: AmB > MIL > NER. The minimum inhibitory concentration (MIC) values were lower than the respective minimum concentrations of the compounds to cause a change in the EPR spectrum, being ∼3.5-fold lower for AmB, 3.9-fold for MIL and ∼1.4-fold for NER. Taken together, the EPR spectroscopy results suggest that the anti-proliferative effects of the three compounds studied are associated with alterations in cell membranes. One of the most likely consequences of these changes would be electrolyte leakage.Communicated by Ramaswamy H. Sarma.


Assuntos
Anfotericina B , Paracoccidioides , Espectroscopia de Ressonância de Spin Eletrônica , Anfotericina B/farmacologia , Anfotericina B/metabolismo , Membrana Celular/metabolismo , Marcadores de Spin
3.
Viruses ; 14(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146865

RESUMO

Several flaviviruses such as Hepatitis C virus, West Nile virus, Dengue virus and Japanese Encephalitis virus exploit the raft platform to enter host cells whereas the involvement of lipid rafts in Zika virus-host cell interaction has not yet been demonstrated. Zika virus disease is caused by a flavivirus transmitted by Aedes spp. Mosquitoes, although other mechanisms such as blood transfusion, sexual and maternal-fetal transmission have been demonstrated. Symptoms are generally mild, such as fever, rash, joint pain and conjunctivitis, but neurological complications, including Guillain-Barré syndrome, have been associated to this viral infection. During pregnancy, it can cause microcephaly and other congenital abnormalities in the fetus, as well as pregnancy complications, representing a serious health threat. In this study, we show for the first time that Zika virus employs cell membrane lipid rafts as a portal of entry into Vero cells. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) hampers a microbe-host cell interaction through the disruption of lipid raft architecture. Here, we found that Amphotericin B by the same mechanism of action inhibits both Zika virus cell entry and replication. These data encourage further studies on the off-label use of Amphotericin B in Zika virus infections as a new and alternate antiviral therapy.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Anfotericina B/metabolismo , Anfotericina B/uso terapêutico , Animais , Antifúngicos/metabolismo , Antifúngicos/uso terapêutico , Antivirais/farmacologia , Chlorocebus aethiops , Feminino , Humanos , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana , Gravidez , Células Vero
4.
Toxicon ; 217: 96-106, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977615

RESUMO

OBJECTIVE: To investigate the in vitro activity, synergism, cytotoxicity and cellular immunological response, as well as the molecular affinity between amphotericin B (AmB) and crotamine (CTA), derived from Crotalus durissus terrificus venom against Leishmania amazonensis. METHODS: This study performed the inhibition of promastigotes and amastigotes' growth under different concentrations of the drug and pharmacological combinations (AmB + CTA) based on the Berimbaum method (synergism study). The lactate dehydrogenase (LDH) quantification method was used to determine the cytotoxicity of the drug and combinations employing four cell lines (J774, HepG2, VERO, and C2C12). Following, the levels of Tumour Necrose Factor-alpha (TNF-α) and Interleukin-12 (IL-12) cytokines, using enzyme-linked immunosorbent assay (ELISA) and nitrites, as an indirect measure of Nitric Oxide (NO), using the Griess reaction were assessed in the supernatants of infected macrophages. In silico approach (molecular docking and dynamics) and binding affinity (surface plasmon resonance) between the drug and toxin were also investigated. RESULTS: CTA enhanced AmB effect against promastigote and amastigote forms of L. amazonensis, decreased the drug toxicity in different cell lines and induced the production of important Th1-like cytokines and NO by infected macrophages. The pharmacological combination also displayed consistent molecular interactions with low energy of coupling and a concentration-dependent profile. CONCLUSION: Our data suggest that this pharmacological approach is a promising alternative treatment against L. amazonensis infection due to the improved activity (synergistic effect) achieved against the parasites' forms and to the decreased cytotoxic effect.


Assuntos
Antiprotozoários , Venenos de Crotalídeos , Anfotericina B/metabolismo , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Venenos de Crotalídeos/química , Crotalus/metabolismo , Citocinas/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo
5.
Microbiol Spectr ; 10(4): e0077622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35867406

RESUMO

Candida glabrata is increasingly isolated from blood cultures, and multidrug-resistant isolates have important implications for therapy. This study describes a cholesterol-dependent clinical C. glabrata isolate (ML72254) that did not grow without blood (containing cholesterol) on routine mycological media and that showed azole and amphotericin B (AmB) resistance. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and whole-genome sequencing (WGS) were used for species identification. A modified Etest method (Mueller-Hinton agar supplemented with 5% sheep blood) was used for antifungal susceptibility testing. WGS data were processed via the Galaxy platform, and the genomic variations of ML72254 were retrieved. A computational biology workflow utilizing web-based applications (PROVEAN, AlphaFold Colab, and Missense3D) was constructed to predict possible deleterious effects of these missense variations on protein functions. The predictive ability of this workflow was tested with previously reported missense variations in ergosterol synthesis genes of C. glabrata. ML72254 was identified as C. glabrata sensu stricto with MALDI-TOF, and WGS confirmed this identification. The MICs of fluconazole, voriconazole, and amphotericin B were >256, >32, and >32 µg/mL, respectively. A novel frameshift mutation in the ERG1 gene (Pro314fs) and many missense variations were detected in the ergosterol synthesis genes. None of the missense variations in the ML72254 ergosterol synthesis genes were deleterious, and the Pro314fs mutation was identified as the causative molecular change for a cholesterol-dependent and multidrug-resistant phenotype. This study verified that web-based computational biology solutions can be powerful tools for examining the possible impacts of missense mutations in C. glabrata. IMPORTANCE In this study, a cholesterol-dependent C. glabrata clinical isolate that confers azole and AmB resistance was investigated using artificial intelligence (AI) technologies and cloud computing applications. This is the first of the known cholesterol-dependent C. glabrata isolate to be found in Turkey. Cholesterol-dependent C. glabrata isolates are rarely isolated in clinical samples; they can easily be overlooked during routine laboratory procedures. Microbiologists therefore need to be alert when discrepancies occur between microscopic examination and growth on routine media. In addition, because these isolates confer antifungal resistance, patient management requires extra care.


Assuntos
Anfotericina B , Candida glabrata , Anfotericina B/metabolismo , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Inteligência Artificial , Azóis/metabolismo , Azóis/farmacologia , Candida glabrata/genética , Colesterol/metabolismo , Colesterol/farmacologia , Biologia Computacional , Farmacorresistência Fúngica/genética , Resistência a Múltiplos Medicamentos , Ergosterol/metabolismo , Testes de Sensibilidade Microbiana , Ovinos
6.
J Biol Chem ; 298(4): 101746, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189143

RESUMO

AmphL is a cytochrome P450 enzyme that catalyzes the C8 oxidation of 8-deoxyamphotericin B to the polyene macrolide antibiotic, amphotericin B. To understand this substrate selectivity, we solved the crystal structure of AmphL to a resolution of 2.0 Å in complex with amphotericin B and performed molecular dynamics (MD) simulations. A detailed comparison with the closely related P450, PimD, which catalyzes the epoxidation of 4,5-desepoxypimaricin to the macrolide antibiotic, pimaricin, reveals key catalytic structural features responsible for stereo- and regio-selective oxidation. Both P450s have a similar access channel that runs parallel to the active site I helix over the surface of the heme. Molecular dynamics simulations of substrate binding reveal PimD can "pull" substrates further into the P450 access channel owing to additional electrostatic interactions between the protein and the carboxyl group attached to the hemiketal ring of 4,5-desepoxypimaricin. This substrate interaction is absent in AmphL although the additional substrate -OH groups in 8-deoxyamphotericin B help to correctly position the substrate for C8 oxidation. Simulations of the oxy-complex indicates that these -OH groups may also participate in a proton relay network required for O2 activation as has been suggested for two other macrolide P450s, PimD and P450eryF. These findings provide experimentally testable models that can potentially contribute to a new generation of novel macrolide antibiotics with enhanced antifungal and/or antiprotozoal efficacy.


Assuntos
Anfotericina B , Proteínas de Bactérias , Streptomyces , Anfotericina B/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Streptomyces/química , Streptomyces/enzimologia , Especificidade por Substrato
7.
Biotechnol Appl Biochem ; 69(4): 1489-1501, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34252982

RESUMO

Streptomyces nodosus is known as the main manufacturer of amphotericin B (AmB), which is an effective antifungal drug. It is verified that the optimization of fermentation conditions and key growth factors have a great impact on the yield of AmB. The AmB production of S. nodosus in cotton-seed meal (CM) medium was 1.6 times than that of beef-paste medium. The transcriptome analysis was used to analyze the effects of different nitrogen media and calcium on S. nodosus. Related genes of the EMP and TCA pathways, such as phosphofructokinase, pyruvate dehydrogenase, and citrate synthase, were upregulated in CM medium. The expression level of the PKS modules of the amphotericin synthesis gene cluster in beef-paste medium was higher. Other functional genes, such as amphGH and amphRIV, have the advantage of expressing in CM medium. Ca2+ promoted the upregulation of genes in metabolic pathways such as EMP pathway (pyruvate dehydrogenase), TCA pathway (citrate synthase), and amphotericin synthesis genes (PKS modules). The expression of WhiB family genes SNOD_RS 13310 and SNOD_RS 17625 was positively correlated with Ca2+ concentration. In addition, in the presence of calcium, the expression level of Sec transport system genes of S. nodosus was lower.


Assuntos
Anfotericina B , Cálcio , Anfotericina B/metabolismo , Anfotericina B/farmacologia , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bovinos , Citrato (si)-Sintase/metabolismo , Nitrogênio , Oxirredutases/metabolismo , Piruvatos , Streptomyces , Transcriptoma
8.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622715

RESUMO

Invasive fungal diseases cause millions of deaths each year. There are currently approximately 300,000 acute cases of aspergillosis, most of which result from a pulmonary infection of immunocompromised patients by the common soil organism and opportunistic pathogen Aspergillus fumigatus Patients are treated with antifungal drugs, such as amphotericin B (AmB). However, AmB has serious limitations due to human organ toxicity. AmB is slightly less toxic if loaded in liposomes, such as AmBisome or AmB-loaded liposomes (AmB-LLs). Even with antifungal therapy, recurrent infections are common, and 1-year fatality rates may exceed 50%. We have previously shown that coating AmB-LLs with the extracellular oligomannan-binding domain of the C-type lectin receptor Dectin-2 (DEC2-AmB-LLs) effectively targets DEC2-AmB-LLs to cell walls, exopolysaccharide matrices, and biofilms of fungal pathogens in vitroIn vitro, DEC2-AmB-LLs reduce the effective dose of AmB for 95% inhibition and killing of A. fumigatus 10-fold compared to that of untargeted AmB-LLs. Herein we tested the antifungal activity of DEC2-AmB-LLs relative to that of untargeted AmB-LLs in immunosuppressed mice with pulmonary aspergillosis. Remarkably, DEC2-AmB-LLs bound 30-fold more efficiently to A. fumigatus at sites of infection in the lungs. Furthermore, Dectin-2-targeted liposomes delivering AmB at a dose of 0.2 mg/kg of body weight significantly reduced the fungal burden in lungs compared to results with untargeted AmB-LLs at 0.2 mg/kg and micellar voriconazole at 20 mg/kg and prolonged mouse survival. By dramatically increasing the efficacy of antifungal drugs at low doses, targeted liposomes have the potential to create a new clinical paradigm to treat diverse fungal diseases.IMPORTANCE Invasive aspergillosis (IA) generally results from a pulmonary infection of immunocompromised patients by the common soil organism and opportunistic pathogen Aspergillus fumigatus The susceptible population has expanded rapidly due to the increased number of cancer patients with immunocompromising chemotherapy and transplant patients taking immunosuppressants. Patients are treated with antifungals, such as liposomal amphotericin B, with per-patient costs exceeding $50,000 in the United States. However, AmB has serious side effects due to host toxicity, which limits its usage and contributes to the lack of fungal clearance in patients at safe doses. Fifty percent of IA patients die within a year. Herein, we employed liposomal amphotericin B coated with the innate immune receptor Dectin-2 to direct antifungals specifically to the fungal pathogen. Using two mouse models of pulmonary aspergillosis, we demonstrate that Dectin-2-targeted delivery of amphotericin B to A. fumigatus resulted in remarkably higher efficacy than that of the untargeted antifungal formulations.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Parede Celular/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/uso terapêutico , Lipossomos/química , Aspergilose Pulmonar/tratamento farmacológico , Anfotericina B/metabolismo , Anfotericina B/uso terapêutico , Animais , Parede Celular/efeitos dos fármacos , Feminino , Lectinas Tipo C/genética , Lipossomos/uso terapêutico , Camundongos , Neutropenia
9.
Chem Commun (Camb) ; 57(23): 2895-2898, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606865

RESUMO

Amphotericin B incorporating 2,2'-bipyridine (bpy-AmB) forms a membrane channel exhibiting pH-dependent Ca2+ ion permeability with a selective response to Cu2+ ions. The coordination structure at bpy sites depends on the pH and metal ions can control the association state of bpy-AmB in the membrane.


Assuntos
Anfotericina B/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , 2,2'-Dipiridil/química , Cálcio/química , Cálcio/metabolismo , Cobre/química , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Permeabilidade , Relação Estrutura-Atividade
10.
Proteins ; 89(5): 558-568, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33389775

RESUMO

Polyene polyketides amphotericin B (AMB) and nystatin (NYS) are important antifungal drugs. Thioesterases (TEs), located at the last module of PKS, control the release of polyketides by cyclization or hydrolysis. Intrigued by the tiny structural difference between AMB and NYS, as well as the high sequence identity between AMB TE and NYS TE, we constructed four systems to study the structural characteristics, catalytic mechanism, and product release of AMB TE and NYS TE with combined MD simulations and quantum mechanics/molecular mechanics calculations. The results indicated that compared with AMB TE, NYS TE shows higher specificity on its natural substrate and R26 as well as D186 were proposed to a key role in substrate recognition. The energy barrier of macrocyclization in AMB-TE-Amb and AMB-TE-Nys systems were calculated to be 14.0 and 22.7 kcal/mol, while in NYS-TE-Nys and NYS-TE-Amb systems, their energy barriers were 17.5 and 25.7 kcal/mol, suggesting the cyclization with their natural substrates were more favorable than that with exchanged substrates. At last, the binding free energy obtained with the MM-PBSA.py program suggested that it was easier for natural products to leave TE enzymes after cyclization. And key residues to the departure of polyketide product from the active site were highlighted. We provided a catalytic overview of AMB TE and NYS TE including substrate recognition, catalytic mechanism and product release. These will improve the comprehension of polyene polyketide TEs and benefit for broadening the substrate flexibility of polyketide TEs.


Assuntos
Anfotericina B/química , Proteínas de Bactérias/química , Nistatina/química , Streptomyces/enzimologia , Tioléster Hidrolases/química , Anfotericina B/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Domínio Catalítico , Ciclização , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Nistatina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Teoria Quântica , Streptomyces/química , Especificidade por Substrato , Termodinâmica , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
11.
Eur J Pharm Biopharm ; 153: 257-272, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32589926

RESUMO

Over the years, a wide variety of nanomedicines has entered global markets, providing a blueprint for the emerging generics industry. They are characterized by a unique pharmacokinetic behavior difficult to explain with conventional methods. In the present approach a physiologically-based nanocarrier biopharmaceutics model has been developed. Providing a compartmental framework of the distribution and elimination of nanocarrier delivery systems, this model was applied to human clinical data of the drug products Doxil®, Myocet®, and AmBisome® as well as to the formulation prototypes Foslip® and NanoBB-1-Dox. A parameter optimization by differential evolution led to an accurate representation of the human data (AAFE < 2). For each formulation, separate half-lives for the carrier and the free drug as well as the drug release were calculated from the total drug concentration-time profile. In this context, a static in vitro set-up and the dynamic in vivo situation with a continuous infusion and accumulation of the carrier were simulated. For Doxil®, a total drug release ranging from 0.01 to 22.1% was determined. With the time of release exceeding the elimination time of the carrier, the major fraction was available for drug targeting. NanoBB-1-Dox released 76.2-77.8% of the drug into the plasma, leading to an accumulated fraction of approximately 20%. The mean residence time of encapsulated doxorubicin was 128 h for Doxil® and 0.784 h for NanoBB-1-Dox, giving the stealth liposomes more time to accumulate at the intended target site. For all other formulations, Myocet®, AmBisome®, and Foslip®, the major fraction of the dose was released into the blood plasma without being available for targeted delivery.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos/fisiologia , Nanopartículas/química , Anfotericina B/química , Anfotericina B/metabolismo , Biofarmácia/métodos , Química Farmacêutica/métodos , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Meia-Vida , Humanos , Lipossomos/química , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo
12.
Biomolecules ; 10(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098224

RESUMO

Candida albicans is one of the most common human fungal pathogens and represents the most important cause of opportunistic mycoses worldwide. Surgical devices including catheters are easily contaminated with C. albicans via its formation of drug-resistant biofilms. In this study, amphotericin-B-resistant C. albicans strains were isolated from surgical devices at an intensive care center. The objective of this study was to develop optimized effective inhibitory treatment of resistant C. albicans by terpenoids, known to be produced naturally as protective signals. Endogenously produced farnesol by C. albicans yeast and plant terpenoids, carvacrol, and cuminaldehyde were tested separately or in combination on amphotericin-B-resistant C. albicans in either single- or mixed-infections. The results showed that farnesol did not inhibit hyphae formation when associated with bacteria. Carvacrol and cuminaldehyde showed variable inhibitory effects on C. albicans yeast compared to hyphae formation. A combination of farnesol with carvacrol showed synergistic inhibitory activities not only on C. albicans yeast and hyphae, but also on biofilms formed from single- and mixed-species and at reduced doses. The combined terpenoids also showed biofilm-penetration capability. The aforementioned terpenoid combination will not only be useful in the treatment of different resistant Candida forms, but also in the safe prevention of biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Terpenos/farmacologia , Anfotericina B/metabolismo , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Terpenos/metabolismo
13.
Eur J Pharm Sci ; 145: 105255, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32032777

RESUMO

Hydrogels from Halomonas levan polysaccharide were prepared at different crosslinking densities. Swelling results demonstrated pH dependent rather than temperature dependent swelling of the hydrogel and the highest swelling value was achieved at basic conditions with a swelling ratio of 9.1 ± 0.1 which is the highest reported for levan based hydrogels. SEM images show a porous network architecture, which indicates a large surface area of the hydrogels. Rheological analyses showed the viscoelastic behavior of the hydrogels. Biocompatibility of the hydrogels was confirmed by cell culture experiments. For drug release experiments Amphotericin B (AmB) was used. 51% of the loaded AmB was released into the PBS buffer and the released AmB had a significant antifungal activity against Candida albicans.


Assuntos
Anfotericina B/metabolismo , Antifúngicos/metabolismo , Candida albicans/metabolismo , Candidíase , Frutanos/metabolismo , Hidrogéis/metabolismo , Anfotericina B/administração & dosagem , Animais , Antifúngicos/administração & dosagem , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/metabolismo , Linhagem Celular , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/metabolismo , Liberação Controlada de Fármacos/efeitos dos fármacos , Liberação Controlada de Fármacos/fisiologia , Frutanos/administração & dosagem , Hidrogéis/administração & dosagem , Camundongos
14.
Biochemistry ; 58(51): 5188-5196, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31793296

RESUMO

Amphotericin B (AmB) is a polyene macrolide antibiotic clinically used as an antifungal drug. Its preferential complexation with ergosterol (Erg), the major sterol of fungal membranes, leads to the formation of a barrel-stave-like ion channel across a lipid bilayer. To gain a better understanding of the mechanism of action, the mode of lipid bilayer spanning provides essential information. However, because of the lack of methodologies to observe it directly, it has not been revealed for the Erg-containing channel assembly for many years. In this study, we disclosed that the AmB-Erg complex spans a lipid bilayer with a single-molecule length, using solid-state nuclear magnetic resonance (NMR) experiments. Paramagnetic relaxation enhancement by Mn2+ residing near the surface of lipid bilayers induced the depth-dependent decay of 13C NMR signals for individual carbon atoms of AmB. We found that both terminal segments, the 41-COOH group and C38-C40 methyl groups, come close to the lipid bilayer surfaces, suggesting that the AmB-Erg complex spans a palmitoyloleoylphosphatidylcholine (POPC) bilayer with a single-molecule length. Molecular dynamics simulation experiments further confirmed the stabilization of the AmB-Erg complex as a single-length spanning complex. These results provide experimental evidence of the single-length complex incorporated in the membrane by making thinner a POPC-Erg bilayer that mimics fungal membranes.


Assuntos
Anfotericina B/metabolismo , Ergosterol/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética
15.
Fungal Genet Biol ; 131: 103247, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31247322

RESUMO

Invasive aspergillosis caused by intrinsically resistant non-fumigatus Aspergillus species displays a poor outcome in immunocompromised patients. The polyene antifungal amphotericin B (AmB) remains to be "gold standard" in the treatment of invasive fungal infections. Aspergillus terreus is innately resistant to AmB, in vivo and in vitro. Till now, the exact mode of action in polyene resistance is not well understood. This review highlights the underlying molecular basis of AmB resistance in A. terreus, displaying data obtained from AmB susceptible A. terreus and AmB resistant A. terreus strains. The effect of AmB on main cellular and molecular functions such as fungal respiration and stress response pathways will be discussed in detail and resistance mechanisms will be highlighted. The fungal stress response machinery seems to be a major player in the onset of AmB resistance in A. terreus.


Assuntos
Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergillus/efeitos dos fármacos , Farmacorresistência Fúngica/fisiologia , Polienos/uso terapêutico , Anfotericina B/metabolismo , Animais , Antifúngicos/metabolismo , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Ergosterol/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polienos/metabolismo
16.
Biochemistry ; 58(17): 2282-2291, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30973009

RESUMO

The clinically important antibiotic amphotericin B (AmB) is a membrane-active natural product that targets membrane sterol. The antimicrobial activity of AmB is generally attributed to its membrane permeabilization, which occurs when a pore is formed across a lipid bilayer. In this study, the molecular orientation of AmB was investigated using solid-state nuclear magnetic resonance (NMR) to better understand the mechanism of antifungal activity. The methyl ester of AmB (AME) labeled with NMR isotopes, d3-AME, and its fluorinated and/or 13C-labeled derivatives were prepared. All of the AmB derivatives showed similar membrane-disrupting activities and ultraviolet spectra in phospholipid liposomes, suggesting that their molecular assemblies in membranes closely mimic those of AmB. Solid-state 2H NMR measurements of d3-AME in a hydrated membrane showed that the mobility of AME molecules depends on concentration and temperature. At a 1:5:45 AME:Erg:dimyristoylphosphatidylcholine ratio, AME became sufficiently mobilized to observe the motional averaging of quadrupole coupling. On the basis of the rotational averaging effect of 19F chemical shift anisotropy, 2H quadrupolar splitting, and 13C-19F dipolar coupling of 14ß-F-AMEs, we deduced that the molecular axis of AME is predominantly parallel to the normal of a lipid bilayer. This result supports the barrel-stave model as a molecular assembly of AmB in membranes.


Assuntos
Anfotericina B/análogos & derivados , Antifúngicos/química , Ergosterol/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Anfotericina B/química , Anfotericina B/metabolismo , Anfotericina B/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Ergosterol/metabolismo , Fungos/citologia , Fungos/efeitos dos fármacos , Fungos/metabolismo , Marcação por Isótopo , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Fosfolipídeos/metabolismo , Esteróis/química , Esteróis/metabolismo
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 205: 442-456, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30055454

RESUMO

In this work, we investigated the interaction of amphotericin B (AmB) nanomicelles on the binding affinity and conformational change of human serum albumin (HSA) in comparison with bovine serum albumin (BSA) under physiological conditions by conducting several spectroscopic techniques further confirmed through molecular docking approaches. The experimental results showed that AmB nanomicelles could bind to both HSA and BSA to form protein/drug complexes with one binding site, and the binding process was spontaneous under physiological conditions. Fluorescence studies revealed that the quenching mechanism of these complexes was static quenching rather than dynamic quenching and exhibited strong binding between serum albumin and AmB nanomicelles. The results from UV-Visible spectra, FT-IR spectra, and CD spectra revealed that the AmB formulations affected the structure of both HSA and BSA proteins by changing the microenvironment around the tryptophan residues of protein and caused a secondary structure change of the protein with the loss of helical stability. The molecular docking experiments also supported the above results and effectively proved the binding and changes in the conformation of serum albumins by AmB micelles. This finding provides information of in vitro drug-plasma protein interactions for further study on the AmB binding mechanism and the pharmacodynamics and pharmacokinetics.


Assuntos
Anfotericina B/química , Albumina Sérica/química , Anfotericina B/metabolismo , Humanos , Cinética , Micelas , Simulação de Acoplamento Molecular , Nanopartículas/química , Nanopartículas/metabolismo , Ligação Proteica , Albumina Sérica/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência
18.
J Phys Chem B ; 122(29): 7332-7339, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29972641

RESUMO

Drugs for treating Leishmaniasis, a parasitic tropical orphan disease, currently have several limitations on their use, which topical treatments could alleviate. Topical treatment requires penetration of drugs deep into the skin, which is aided by encapsulation within ultradeformable liposomes. Penetrability depends on the flexibility of the lipid membrane, which may be affected by the drugs. We have studied the biophysical effects of four anti-Leishmania drugs (miltefosine (Milt), amphotericin B (AmpB), indole (Ind), and imiquimod (Imiq)) on a soy phosphatidylcholine/sodium cholate membrane. Using diffuse X-ray scattering techniques, we determined bending modulus ( KC) and chain order parameter ( SX-ray) of the membrane at several drug concentrations. Form factor scattering data allowed construction of electron density profiles, which yielded bilayer thickness and area per lipid. Results show that AmpB had the largest effect on KC and SX-ray, causing the bilayer to lose integrity at high concentrations. Imiq and Ind induced slight membrane stiffening, whereas Milt had little effect. Imiq also notably decreased chain order at high concentrations. These results will aid in the design of new topical treatments, where Milt, Ind, and Imiq could be used at any concentration without affecting liposome integrity or physical properties, whereas AmpB should not be used at high concentrations.


Assuntos
Antiprotozoários/química , Lipossomos/química , Anfotericina B/química , Anfotericina B/metabolismo , Antiprotozoários/metabolismo , Imiquimode/química , Imiquimode/metabolismo , Indóis/química , Indóis/metabolismo , Lipossomos/metabolismo , Fosfatidilcolinas/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/metabolismo , Colato de Sódio/química , Difração de Raios X
19.
AAPS PharmSciTech ; 19(5): 2077-2086, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29691753

RESUMO

We report nanomicelles of amphotericin B (AmB) using various molar ratios of AmB and sodium deoxycholate sulfate (SDCS) for inhalation with improved stability, solubility, bioactivity, and safety. The particle sizes of all aerosolized formulations are expressed as mass median aerodynamic diameter (0.9-1.6 µm), fine particle fraction (70.3-86.5%), and geometric standard deviation (1.4-2.1) which indicated their sizes are appropriate for use as an inhaler. In vitro cytotoxicity studies conducted using respiratory and kidney cell lines demonstrated that the marketed Fungizone® was toxic to macrophage and embryonic kidney cells and cell viability decreased from 96 to 48% and from 97 to 67%, respectively when the AmB equivalent concentration was increased from 1 to 16 µg/mL. However, AmB-SDCS formulations showed no evidence of toxicity even up to 8 µg/mL compared to Fungizone®. Minimum inhibitory and fungicidal concentrations were significantly reduced against Cryptococcus neoformans, and Candida albicans. Also, antileishmanial activity significantly improved for AmB-SDCS formulations. There was an evidence of phagocytosis of the AmB-SDCS formulation by alveolar macrophages NR 8383. Molecular modeling studies suggested the role of hydrogen bonding in stabilization of the AmB-SDCS complex. This study indicated that AmB-SDCS nanomicelles can be used to design a safe and cost-effective AmB for inhalation. Graphical abstract ᅟ.


Assuntos
Anfotericina B/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Ácido Desoxicólico/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Sulfatos/administração & dosagem , Células A549 , Aerossóis , Amebicidas/administração & dosagem , Amebicidas/metabolismo , Anfotericina B/metabolismo , Animais , Antibacterianos/administração & dosagem , Antibacterianos/metabolismo , Antifúngicos/administração & dosagem , Antifúngicos/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Sobrevivência Celular/fisiologia , Ácido Desoxicólico/metabolismo , Portadores de Fármacos/metabolismo , Células HEK293 , Humanos , Lipídeos , Micelas , Testes de Sensibilidade Microbiana , Nanopartículas/metabolismo , Tamanho da Partícula , Solubilidade , Sulfatos/metabolismo
20.
AAPS PharmSciTech ; 19(4): 1606-1624, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29488196

RESUMO

Type of biological membrane used in skin permeation experiment significantly affects skin permeation and deposition potential of tested formulations. In this study, a comparative study has been carried out to evaluate the potential of a synthetic membrane (Strat-M™) with rat, human, and porcine ear skin to carry out skin permeation study of nanoformulations of a high molecular weight drug, amphotericin B. Results demonstrated that the permeation of this high molecular weight drug through Strat-M™ showed close similitude to human skin. Value of correlation coefficient (R2) of log diffusion between Strat-M™ and human skin was found to be 0.99 which demonstrated the similarities of Strat-M™ membrane to the human skin. In similarity factor analysis, the value of f2 was also found to be 85, which further demonstrated the similarities of Strat-M™ membrane to human skin. Moreover, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis of synthetic and biological membranes depicted almost similar morphological features (thickness, pore size, surface morphology, and diameter) of synthetic membrane with human skin. The results of the study demonstrated Strat-M™ as a better alternative to carry out skin permeation experiment due to the consistent results, reproducibility, easy availability, and minimum variability with human skin.


Assuntos
Anfotericina B/metabolismo , Membranas Artificiais , Nanopartículas/metabolismo , Absorção Cutânea/efeitos dos fármacos , Anfotericina B/administração & dosagem , Anfotericina B/química , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Composição de Medicamentos , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Ratos , Reprodutibilidade dos Testes , Absorção Cutânea/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...